Euroasian journal of hepato-gastroenterology

Register      Login

VOLUME 13 , ISSUE 2 ( July-December, 2023 ) > List of Articles

Original Article

Identification of Leading Compounds from Euphorbia neriifolia (Dudsor) Extracts as a Potential Inhibitor of SARS-CoV-2 ACE2-RBDS1 Receptor Complex: An Insight from Molecular Docking ADMET Profiling and MD-simulation Studies

Md Nur Islam, Md Enayet Ali Pramanik, Md Arju Hossain, Md Hasanur Rahman, Md Sahadot Hossen, Md Ashraful Islam, M Morsed Zaman Miah, Istiak Ahmed, AZM Mostaque Hossain, Md Jawadul Haque, AKM Monoarul Islam, Md Nowshad Ali, Rukhshana Akhter Jahan, Md Enamul Haque, Md Munzur Rahman, Md Sharif Hasan, Mohammad Motiur Rahman, Md Mamun Kabir, Prabir Mohan Basak, Md Abdul Mumit Sarkar, Md Shafiqul Islam, Md Rashedur Rahman, AKM Azad-ud-doula Prodhan, Ashik Mosaddik, Humayra Haque, Fahmida Fahmin, Haimanti Shukla Das, Md Manzurul Islam, Chandrima Emtia, Md Royhan Gofur

Keywords : Absorption, distribution, metabolism, excretion, and toxicity (ADMET), Angiotensin converting enzyme 2, Coronavirus disease-19, Euphorbia neriifolia and phytochemicals, Molecular docking, Molecular dynamics simulation, Molecular mechanics of generalized born and surface

Citation Information : Islam MN, Pramanik ME, Hossain MA, Rahman MH, Hossen MS, Islam MA, Miah MM, Ahmed I, Hossain AM, Haque MJ, Islam AM, Ali MN, Jahan RA, Haque ME, Rahman MM, Hasan MS, Rahman MM, Kabir MM, Basak PM, Sarkar MA, Islam MS, Rahman MR, Prodhan AA, Mosaddik A, Haque H, Fahmin F, Das HS, Islam MM, Emtia C, Gofur MR. Identification of Leading Compounds from Euphorbia neriifolia (Dudsor) Extracts as a Potential Inhibitor of SARS-CoV-2 ACE2-RBDS1 Receptor Complex: An Insight from Molecular Docking ADMET Profiling and MD-simulation Studies. Euroasian J Hepatogastroenterol 2023; 13 (2):89-107.

DOI: 10.5005/jp-journals-10018-1414

License: CC BY-NC 4.0

Published Online: 26-12-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Coronavirus disease-19 (COVID-19) are deadly and infectious disease that impacts individuals in a variety of ways. Scientists have stepped up their attempts to find an antiviral drug that targets the spike protein (S) of Angiotensin converting enzyme 2 (ACE2) (receptor protein) as a viable therapeutic target for coronavirus. The most recent study examines the potential antagonistic effects of 17 phytochemicals present in the plant extraction of Euphorbia neriifolia on the anti-SARS-CoV-2 ACE2 protein. Computational techniques like molecular docking, absorption, distribution, metabolism, excretion, and toxicity (ADMET) investigations, and molecular dynamics (MD) simulation analysis were used to investigate the actions of these phytochemicals. The results of molecular docking studies showed that the control ligand (2-acetamido-2-deoxy-β-D-glucopyranose) had a binding potential of –6.2 kcal/mol, but the binding potentials of delphin, β-amyrin, and tulipanin are greater at –10.4, 10.0, and –9.6 kcal/mol. To verify their drug-likeness, the discovered hits were put via Lipinski filters and ADMET analysis. According to MD simulations of the complex run for 100 numbers, delphin binds to the SARS-CoV-2 ACE2 receptor's active region with good stability. In root-mean-square deviation (RMSD) and root mean square fluctuation (RMSF) calculations, delphinan, β-amyrin, and tulipanin showed reduced variance with the receptor binding domain subunit 1(RBD S1) ACE2 protein complex. The solvent accessible surface area (SASA), radius of gyration (Rg), molecular surface area (MolSA), and polar surface area (PSA) validation results for these three compounds were likewise encouraging. The convenient binding energies across the 100 numbers binding period were discovered by using molecular mechanics of generalized born and surface (MM/GBSA) to estimate the ligand-binding free energies to the protein receptor. All things considered, the information points to a greater likelihood of chemicals found in Euphorbia neriifolia binding to the SARS-CoV-2 ACE2 active site. To determine these lead compounds’ anti-SARS-CoV-2 potential, in vitro and in vivo studies should be conducted.


HTML PDF Share
  1. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 2020;30(7):1346–1351.e2. DOI: 10.1016/j.cub.2020.03.022.
  2. Rahman MS, Hoque MN, Islam MR, et al. Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2, the etiologic agent of COVID-19 pandemic: An in silico approach. Peer J 2020;8:e9572. DOI: 10.7717/peerj.9572.
  3. Madjunkov M, Dviri M, Librach C. A comprehensive review of the impact of COVID-19 on human reproductive biology, assisted reproduction care and pregnancy: A Canadian perspective. J Ovarian Res 2020;13(1):140. DOI: 10.1186/s13048-020-00737-1.
  4. Ciotti M, Angeletti S, Minieri M, et al. COVID-19 outbreak: An overview. Chemotherapy 2019;64(5–6):215–223. DOI: 10.1159/000507423.
  5. Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet 2021;398(10317):2126–2128. DOI: 10.1016/S0140-6736(21)02758-6.
  6. Hoque MN, Akter S, Mishu ID, et al. Microbial co-infections in COVID-19: Associated microbiota and underlying mechanisms of pathogenesis. Microb Pathog 2021;156:104941. DOI: 10.1016/j.micpath.2021.104941.
  7. The Nextstrain Team. Genomic epidemiology of SARS-CoV-2 with subsampling focused globally over the past 6 months. Latest global SARS-CoV-2 analysis (GISAID data). 2022. Available from: https://nextstrain.org/ncov/gisaid/global/6m.
  8. Bui LT, Winters NI, Chung MI, et al. Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity. bioRxiv [Preprint] 2021:2020.10.20.347187. DOI: 10.1101/2020.10.20.347187.
  9. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect 2020;81(2):e16–e25. DOI: 10.1016/j.jinf.2020.04.021.
  10. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020;395(10229):1054–1062. DOI: 10.1016/S0140-6736(20)30566-3.
  11. Machado D, Girardini M, Viveiros M, et al. Challenging the drug-likeness dogma for new drug discovery in tuberculosis. Front Microbiol 2018;9:1367. DOI: 10.3389/fmicb.2018.01367.
  12. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020;19(3):149–150. DOI: 10.1038/d41573-020-00016-0.
  13. Daamen AR, Bachali P, Owen KA, et al. Comprehensive transcriptomic analysis of COVID-19 blood, lung, and airway. Sci Rep 2021;11(1):7052. DOI: 10.1038/s41598-021-86002-x.
  14. Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect 2020;9(1):761–770. DOI: 10.1080/22221751.2020.1747363.
  15. Pramanik MEA, Miah MMZ, Ahmed I, et al. Euphorbia neriifolia leaf juice on mild and moderate COVID-19 patients: Implications in OMICRON Era. Euroasian J Hepato-Gastroenterol 2022;12(1):10–18. DOI: https://doi.org/10.5005/jp-journals-10018-1367.
  16. Li S, Duan X, Li Y, et al. Differentially expressed immune response genes in COVID-19 patients based on disease severity. Aging (Albany NY) 2021;13(7):9265–9276. DOI: 10.18632/aging.202877.
  17. Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020;26(5):681–687. DOI: 10.1038/s41591-020-0868-6.
  18. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579(7798):265–269. DOI: 10.1038/s41586-020-2008-3.
  19. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–280.e8. DOI: 10.1016/j.cell.2020.02.052.
  20. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020;367(6485):1444–1448. DOI: 10.1126/science.abb2762.
  21. Wrobel AG, Benton DJ, Xu P, et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol 2020;27(8):763–767. DOI: 10.1038/s41594-020-0468-7.
  22. Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol 2020;177(21):4825–4844. DOI: 10.1111/bph.15082.
  23. Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med 2020;46(4):586–590. DOI: 10.1007/s00134-020-05985-9.
  24. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res 2020;81(5):537–540. DOI: 10.1002/ddr.21656.
  25. Jia H, Neptune E, Cui H. Targeting ACE2 for COVID-19 therapy: Opportunities and challenges. Am J Respir Cell Mol Biol 2021;64(4):416–425. DOI: 10.1165/rcmb.2020-0322PS.
  26. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020;20(5):533–534. DOI: 10.1016/S1473-3099(20)30120-1.
  27. Sohel M, Hossain M, Hasan M, et al. Management of mental health during COVID 19 pandemic: Possible strategies. Journal of Advanced Biotechnology and Experimental Therapeutics 2021;4(3):276–289. DOI: https://doi.org/10.5455/jabet.2021.d128.
  28. Bhardwaj VK, Singh R, Sharma J, et al. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J Biomol Struct Dyn 2021;39(10):3449–3458. DOI: 10.1080/07391102.2020.1766572.
  29. Oladele JO, Oyeleke OM, Oladele OT, et al. Covid-19 treatment: Investigation on the phytochemical constituents of Vernonia amygdalina as potential Coronavirus-2 inhibitors. Comput Toxicol 2021;18:100161. DOI: 10.1016/j.comtox.2021.100161.
  30. Roy S, Bhattacharyya P. Possible role of traditional medicinal plant Neem (Azadirachta indica) for the management of COVID-19 infection International Journal of Research in Pharmaceutical Sciences 2020;11(SPL1):122–125. DOI: https://doi.org/10.26452/ijrps.v11iSPL1.2256.
  31. Oladele JO, Oyeleke OM, Oladele OT, et al. Kolaviron (Kolaflavanone), apigenin, fisetin as potential Coronavirus inhibitors: In silico investigation. Research Square 2020. DOI: https://doi.org/10.21203/rs.3.rs-51350/v1.
  32. Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem 2010;18(22):7940–7947. DOI: 10.1016/j.bmc.2010.09.035.
  33. Thorat BR, Bolli V. A review on euphorbia neriifolia plant. International Research Journal of Modernization in Engineering Technology and Science 2017;1(6):1723–1732. DOI: http://dx.doi.org/10.26717/BJSTR.2017.01.000523.
  34. Hohmann J, Molnár J. [Euphorbiaceae diterpenes: plant toxins or promising molecules for the therapy?]. Acta Pharm Hung 2004;74(3):149–157. PMID: 16318224.
  35. Betancur-Galvis LA, Morales GE, Forero JE, et al. Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the Euphorbia genus. Memórias do Instituto Oswaldo Cruz 2002;97(4):541–546. DOI: https://doi.org/10.1590/s0074-02762002000400017.
  36. Bigoniya P, Rana AC. A comprehensive phyto-pharmacological review of euphorbia neriifolia linn. Pharmacognosy Reviews 2008;2(4):57–66. Available from: https://www.phcogrev.com.
  37. Koh LL, Ng AS, Tan GK. Structure of a diterpene from Euphorbia neriifolia. Acta Crystallographica Section C-crystal Structure Communications 1992;48(4):753–754. DOI: https://doi.org/10.1107/S0108270191011319.
  38. Zhao JX, Liu CP, Qi WY, et al. Eurifoloids A-R, structurally diverse diterpenoids from Euphorbia neriifolia. J Nat Prod 2014;77(10): 2224–2233. DOI: 10.1021/np5004752.
  39. Yan SL, Li YH, Chen XQ, et al. Diterpenes from the stem bark of Euphorbia neriifolia and their in vitro anti-HIV activity. Phytochemistry 2018;145:40–47. DOI: 10.1016/j.phytochem.2017.10.006.
  40. Raskin I, Ribnicky DM, Komarnytsky S, et al. Plants and human health in the twenty-first century. Trends Biotechnol 2002;20(12):522–531. DOI: https://doi.org/10.1016/S0167-7799(02)02080-2
  41. Reddy L, Odhav B, Bhoola KD. Natural products for cancer prevention: A global perspective. Pharmacol Ther 2003;99(1):1–13. DOI: 10.1016/s0163-7258(03)00042-1.
  42. Anjaneyulu V, Ramachandra R. Crystallization principles of Euphorbiaceae. Part IV: Triterpenes from the stems and leaves of E. neriilfolia. Curr Sci 1965;34:606–609. Available from: https://www.currentscience.ac.in/.
  43. Mallavadhani UV, Satyanarayana KV, Mahapatra A, et al. A new tetracyclic triterpene from the latex of Euphorbia nerifolia. Nat prod Res 2004;18(1):33–37. DOI: https://doi.org/10.1080/1057563031000122068.
  44. Ilyas M, Parveen M, Amin KM. Neriifolione, a triterpene from Euphorbia neriifolia. Phytochemistry 1998;48(3):561–563. DOI: https://doi.org/10.1016/S0031-9422(98)00044-2.
  45. Baslas RK, Agarwal R. Chemical investigation of some anti-cancer plants of Euphorbia genus. Indian journal of chemistry section b-organic chemistry including medicinal chemistry 1980;19(8): 717–718. ISSN: 0376-4699. Available from: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902009052591251.
  46. Ng AS. Diterpenes from Euphorbia neriifolia. Phytochemistry 1990;29(2):662–664. DOI: https://doi.org/10.1016/0031-9422(90)85140-B.
  47. Castro-Alvarez A, Costa AM, Vilarrasa J. The performance of several docking programs at reproducing protein-macrolide-like crystal structures. Molecules 2017;22(1):136. DOI: 10.3390/molecules22010136.
  48. Gaur K, Rana AC, Nema RK, et al. Anti-inflammatory and analgesic activity of hydro-alcoholic leaves extract of Euphorbia neriifolia Linn. Asian J Pharm Clin Res 2009;2(1):26–28. Available from: https://www.researchgate.net/publication/228448383.
  49. Kumara SM, Neeraj P, Santosh D, et al. Phytochemical and antimicrobial studies of leaf extract of Euphorbia neriifolia. Journal of Medicinal Plants Research 2011;5(24):5785–5788. Available from: http://www.academicjournals.org/JMPR.
  50. Ikuta K, Mizuta K, Suzutani T. Anti-influenza virus activity of two extracts of the blackcurrant (Ribes nigrum L.) from New Zealand and Poland. Fukushima J Med Sci 2013;59(1):35–38. DOI: https://doi.org/10.5387/fms.59.35.
  51. Knox YM, Hayashi K, Suzutani T, et al. Activity of anthocyanins from fruit extract of Ribes nigrum L. against influenza A and B viruses. Acta virologica 2001;45(4):209–215. PMID: 11885927.
  52. Ren Z, Na L, Xu Y, et al. Dietary supplementation with lacto-wolfberry enhances the immune response and reduces pathogenesis to influenza infection in mice. J Nutr 2012;142(8):1596–1602. DOI: https://doi.org/10.3945/jn.112.159467.
  53. Calland N, Dubuisson J, Rouillé Y, et al. Hepatitis C virus and natural compounds: A new antiviral approach? Viruses 2012;4(10):2197–2217. DOI: https://doi.org/10.3390/v4102197.
  54. Vázquez-Calvo Á, Jiménez de Oya N, Martín-Acebes MA, et al. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and dengue virus. Front Microbiol 2017;8:1314. DOI: https://doi.org/10.3389/fmicb.2017.01314.
  55. Di Sotto A, Di Giacomo S, Amatore D, et al. A polyphenol rich extract from Solanum melongena L. DR2 peel exhibits antioxidant properties and anti-herpes simplex virus type 1 activity in vitro. Molecules 2208;23(8):2066. DOI: https://doi.org/10.3390/molecules23082066.
  56. El Deeb KS, Eid HH, Ali ZY, et al. Bioassay-guided fractionation and identification of antidiabetic compounds from the rind of Punica Granatum Var. nana. Nat Prod Res 2021;35(12):2103–2106. DOI: 10.1080/14786419.2019.1655411.
  57. Hernández-Vázquez L, Palazón Barandela J, Navarro-Ocaña A. The pentacyclic triterpenes α, β-amyrins: A review of sources and biological activities. Chapter 23 In: Rao, Venketeshwer 487-502. Phytochemicals: A Global perspective of their role in nutrition and health. IntechOpen 2012; ISBN: 978-953-51-4317-8. DOI: https://doi.org/10.5772/27253.
  58. Vitor CE, Figueiredo CP, Hara DB, et al. Therapeutic action and underlying mechanisms of a combination of two pentacyclic triterpenes, α-and β-amyrin, in a mouse model of colitis. Br J Pharmacol 2009;157(6):1034–1044. DOI: https://doi.org/10.1111/j.1476-5381.2009.00271.x.
  59. Holanda Pinto SA, Pinto LM, Cunha GM, et al. Anti-inflammatory effect of α, β-Amyrin, a pentacyclic triterpene from Protium heptaphyllum in rat model of acute periodontitis. Inflammopharmacology 2008;16(1):48–52. DOI: https://doi.org/10.1007/s10787-007-1609-x.
  60. Jabeen K, Javaid A, Ahmad E, et al. Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Nat Prod Res 2011;25(3):264–276. DOI: https://doi.org/10.1080/14786411003754298.
  61. Zheng Y, Huang W, Yoo JG, et al. Antibacterial compounds from Siraitia grosvenorii leaves. Nat Prod Res 2011;25(9):890–897. DOI: https://doi.org/10.1080/14786419.2010.490212.
  62. Thao NT, Hung TM, Lee MK, et al. Triterpenoids from Camellia japonica and their cytotoxic activity. Chem Pharm Bull (Tokyo) 2010;58(1): 121–124. DOI: https://doi.org/10.1248/cpb.58.121.
  63. Ching J, Chua TK, Chin LC, et al. Beta-amyrin from Ardisia elliptica Thunb. is more potent than aspirin in inhibiting collagen-induced platelet aggregation. Indian J Exp Biol 2010;48(3):275–279. PMID: 21046981.
  64. Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews 1997;23(1–3):3–25. DOI: https://doi.org/10.1016/S0169-409X(96)00423-1.
  65. Benet LZ, Hosey CM, Ursu O, et al. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev 2016;101:89–98. DOI: 10.1016/j.addr.2016.05.007.
  66. Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 2008;18(17):4872–4875. DOI: https://doi.org/10.1016/j.bmcl.2008.07.071.
  67. Klopman G, Stefan LR, Saiakhov RD. ADME evaluation: 2. A computer model for the prediction of intestinal absorption in humans. Eur J Pharm Sci 2002;17(4–5):253–263. DOI: https://doi.org/10.1016/s0928-0987(02)00219-1.
  68. Srivalli KMR, Lakshmi PK. Overview of P-glycoprotein inhibitors: A rational outlook. Braz J Pharm Sci 2012;48(3):353–367. DOI: https://doi.org/10.1590/S1984-82502012000300002.
  69. Cheng F, Yu Y, Zhou Y, et al. Insights into molecular basis of cytochrome p450 inhibitory promiscuity of compounds. J Chem Inf Model 2011;51(10);2482–2495. DOI: https://doi.org/10.1021/ci200317s.
  70. Oso BJ, Oyewo EB, Oladiji AT. Influence of ethanolic extracts of dried fruit of Xylopia aethiopica (Dunal) A. Rich on haematological and biochemical parameters in healthy Wistar rats. Clinical Phytoscience 2019;5(9):1–10. DOI: https://doi.org/10.1186/s40816-019-0104-4
  71. Wang H, Chiu M, Xie Z, et al. Synthetic microRNA cassette dosing: Pharmacokinetics, tissue distribution and bioactivity. Mol Pharm 2012;9(6):1638–1644. DOI: https://doi.org/10.1021/mp2006483.
  72. Bharadwaj S, Dubey A, Yadava U, et al. Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Brief Bioinform 2021;22(2):1361–1377. DOI: https://doi.org/10.1093/bib/bbaa382.
  73. Aljahdali MO, Molla MH, Ahammad F. Compounds identified from marine mangrove plant (Avicennia Alba) as potential antiviral drug candidates against WDSV, an in-silico approach. Mar Drugs 2021;19(5):253. DOI: https://doi.org/10.3390/md19050253.
  74. Krupanidhi S, Abraham Peele K, Venkateswarulu TC, et al. Screening of phytochemical compounds of Tinospora cordifolia for their inhibitory activity on SARS-CoV-2: An in silico study. J Biomol Struct Dyn 2021;39(15):5799–5803. DOI: 10.1080/07391102.2020.1787226.
  75. Baildya N, Khan AA, Ghosh NN, et al. Screening of potential drug from Azadirachta Indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies. J Mol Struct 2021;1227:129390. DOI: https://doi.org/10.1016/j.molstruc.2020.129390.
  76. Elebeedy D, Elkhatib WF, Kandeil A, et al. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC advances 2021;11(47):29267–29286. DOI: https://doi.org/10.1039/d1ra05268c.
  77. Mahmud S, Rahman E, Nain Z, et al. Computational discovery of plant-based inhibitors against human carbonic anhydrase IX and molecular dynamics simulation. J Biomol Struct Dyn 2021;39(8):2754–2770. DOI: 10.1080/07391102.2020.1753579.
  78. Mahmoud A, Mostafa A, Al-Karmalawy AA, et al. Telaprevir is a potential drug for repurposing against SARS-CoV-2: Computational and in vitro studies. Heliyon 2021;7(9):e07962. DOI: https://doi.org/10.1016/j.heliyon.2021.e07962.
  79. Shang J, Gang Ye, Ke S, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020;581(7807):221–224. DOI: https://doi.org/10.1038/s41586-020-2179-y.
  80. Studio D. Dassault systems. BIOVIA Discovery Studio modelling environment, Release 4.5. Accelrys Softw Inc. 2015; 98–104. Available from: https://www.3ds.com/products/biovia/discovery-studio.
  81. Schrödinger LL. The PyMOL Molecular Graphics System, Version. 2020; 2.4. Available from: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1571978.
  82. Kaplan W, Littlejohn TG. Swiss-PDB viewer (Deep View). Brief Bioinform 2001;2(2):195–197. DOI: 10.1093/bib/2.2.195.
  83. Tian W, Chen C, Lei X, et al. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 2018;46(W1):W363–W367. DOI: 10.1093/nar/gky473.
  84. Chang FR, Yen CT, Ei-Shazly M, et al. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Nat Prod Commun 2012;7(11):1415–1417. PMID: 23285797.
  85. Li JC, Dai WF, Liu D, et al. Bioactive ent-isopimarane diterpenoids from Euphorbia neriifolia. Phytochemistry 2020;175:112373. DOI: 10.1016/j.phytochem.2020.112373.
  86. Yuan S, Chan HCS, Zhenquan Hu. Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science 2017;7(2):e1298. DOI: https://doi.org/10.1002/wcms.1298.
  87. Kim S, Chen J, Cheng T, et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res 2019;47(D1):D1102–D1109. DOI: 10.1093/nar/gky1033.
  88. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol 2015;1263:243–250. DOI: 10.1007/978-1-4939-2269-7_19.
  89. Halgren TA. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. Journal of computational chemistry 1996;17(5-6):553–586. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<553::AID-JCC3>3.0.CO;2-T.
  90. Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J med chem 2015;58(9):4066–4072. DOI: https://doi.org/10.1021/acs.jmedchem.5b00104.
  91. Hoffman JM, Margolis KG. Building community in the gut: A role for mucosal serotonin. Nat Rev Gastroenterol Hepatol 2020;17(1):6–8. DOI: https://doi.org/10.1038/s41575-019-0227-6.
  92. Bigoniya P, Rana AC. Protective effect of Euphorbia neriifolia saponin fraction on CCl4-induced acute hepatotoxicity. African Journal of Biotechnology 2010;9(42):7148–7156. DOI: 10.5897/AJB09.1440.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.