Euroasian journal of hepato-gastroenterology

Register      Login

VOLUME 12 , ISSUE S1 ( July, 2022 ) > List of Articles

Original Article

Outcomes after Liver Transplantation with Steatotic Grafts: Redefining Acceptable Cutoffs for Steatotic Grafts

Ben L Da, Jinendra Satiya, Rajiv P Heda, Yu Jiang, Lawrence F Lau, Ahmed Fahmy, Aaron Winnick, Nitzan Roth, Elliot Grodstein, Paul J Thuluvath, Ashwani K Singal, Thomas D Schiano, Lewis W Teperman, Sanjaya K Satapathy

Keywords : Allografts, Donor selection, Fatty liver, Liver transplantation, Tissue and organ procurement

Citation Information :

DOI: 10.5005/jp-journals-10018-1361

License: CC BY-NC 4.0

Published Online: 10-08-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Background: Graft macrosteatosis can predispose to a higher risk of graft loss so we sought to redefine acceptable cutoffs for graft steatosis. Methods: Data of 26,103 donors who underwent liver transplantation (LT) between January 2004 and December 2018 from the UNOS-STAR database were utilized. A high-risk steatotic (HRS) graft and a low-risk steatotic (LRS) graft were defined as ≥20% and <20% macrosteatosis, respectively. High-risk steatotic grafts were further classified as grafts with 20–29% (G1S grafts), 30–39% (G2S grafts), and ≥40% steatosis (G3S grafts). Outcomes between groups were compared. Results: LRS grafts had excellent graft (93.3 and 87.7%) and overall survival (95.4 and 90.5%) at 90 days and 1 year. Compared to LRS grafts, G1S, G2S, and G3S grafts had worse graft and overall survival at 90 days and 1-year (p <0.001). There was no difference in graft or overall survival of G1S or G3S grafts compared to G2S grafts until after adjustment in which G3S grafts were found to be associated with an increased risk of graft loss—aHR 1.27 (1.03–1.57), p = 0.02. Discussion: Liver grafts can be categorized into three categories: (1) <20% or “very low risk”, (2) 20–39% or “low-to-moderate risk”, and usually acceptable, and (3) ≥40% steatosis or “moderate-to-high risk”.


PDF Share
  1. Kwong A, Kim WR, Lake JR, et al. OPTN/SRTR 2018 Annual Data Report: Liver. Am J Transplant 2020;20(Suppl 1):193–299. DOI: 10.1111/ajt.15674.
  2. McCormack L, Dutkowski P, El-Badry AM, et al. Liver transplantation using fatty livers: always feasible? J Hepatol 2011;54(5):1055–1062. DOI: 10.1016/j.jhep.2010.11.004.
  3. Jackson KR, Motter JD, Haugen CE, et al. Minimizing risks of liver transplantation with steatotic donor livers by preferred recipient matching. Transplantation 2020;104(8):1604–1611. DOI: 10.1097/TP.0000000000003052.
  4. Chu MJ, Hickey AJ, Phillips AR, et al. The impact of hepatic steatosis on hepatic ischemia-reperfusion injury in experimental studies: a systematic review. Biomed Res Int 2013;2013:192029. DOI: 10.1155/2013/192029.
  5. Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018;15(1):11–20. DOI: 10.1038/nrgastro.2017.109.
  6. Younossi ZM, Bacon BR, Dieterich DT, et al. Disparate access to treatment regimens in chronic hepatitis C patients: data from the TRIO network. J Viral Hepat 2016;23(6):447–454. DOI: 10.1111/jvh.12506.
  7. Durand F, Renz JF, Alkofer B, et al. Report of the Paris consensus meeting on expanded criteria donors in liver transplantation. Liver Transpl 2008;14(12):1694–1707. DOI: 10.1002/lt.21668.
  8. Hamar M, Selzner M. Steatotic donor livers: where is the risk-benefit maximized? Liver Transpl 2017;23(Suppl 1):S34–S39. DOI: 10.1002/lt.24826.
  9. Deroose JP, Kazemier G, Zondervan P, et al. Hepatic steatosis is not always a contraindication for cadaveric liver transplantation. HPB 2011;13(6):417–425. DOI: 10.1111/j.1477-2574.2011.00310.x.
  10. Todo S, Demetris AJ, Makowka L, et al. Primary nonfunction of hepatic allografts with preexisting fatty infiltration. Transplantation 1989;47(5):903–905. DOI: 10.1097/00007890-198905000-00034.
  11. Nocito A, El-Badry AM, Clavien PA. When is steatosis too much for transplantation? J Hepatol 2006;45(4):494–499. DOI: 10.1016/j.jhep.2006.07.017.
  12. D'Alessandro AM, Kalayoglu M, Sollinger HW, et al. The predictive value of donor liver biopsies for the development of primary nonfunction after orthotopic liver transplantation. Transplantation 1991;51(1):157–163. DOI: 10.1097/00007890-199101000-00024.
  13. Dutkowski P, Schlegel A, Slankamenac K, et al. The use of fatty liver grafts in modern allocation systems: risk assessment by the balance of risk (BAR) score. Ann Surg 2012;256(5):861–868; discussion 868–869. DOI: 10.1097/SLA.0b013e318272dea2.
  14. Chu MJ, Dare AJ, Phillips AR, et al. Donor hepatic steatosis and outcome after liver transplantation: a systematic review. J Gastrointest Surg 2015;19(9):1713–1724. DOI: 10.1007/s11605-015-2832-1.
  15. Spitzer AL, Lao OB, Dick AA, et al. The biopsied donor liver: incorporating macrosteatosis into high-risk donor assessment. Liver Transpl 2010;16(7):874–884. DOI: 10.1002/lt.22085.
  16. Briceño J, Ciria R, Pleguezuelo M, et al. Impact of donor graft steatosis on overall outcome and viral recurrence after liver transplantation for hepatitis C virus cirrhosis. Liver Transpl 2009;15(1):37–48. DOI: 10.1002/lt.21566.
  17. de Graaf EL, Kench J, Dilworth P, et al. Grade of deceased donor liver macrovesicular steatosis impacts graft and recipient outcomes more than the Donor Risk Index. J Gastroenterol Hepatol 2012;27(3): 540–546. DOI: 10.1111/j.1440-1746.2011.06844.x.
  18. Angele MK, Rentsch M, Hartl WH, et al. Effect of graft steatosis on liver function and organ survival after liver transplantation. Am J Surg 2008;195(2):214–220. DOI: 10.1016/j.amjsurg.2007.02.023.
  19. Fishbein TM, Fiel MI, Emre S, et al. Use of livers with microvesicular fat safely expands the donor pool. Transplantation 1997;64(2):248–251. DOI: 10.1097/00007890-199707270-00012.
  20. Jackson KR, Motter JD, Haugen CE, et al. Temporal trends in utilization and outcomes of steatotic donor livers in the United States. Am J Transplant 2020;20(3):855–863. DOI: 10.1111/ajt.15652.
  21. Chavin KD, Taber DJ, Norcross M, et al. Safe use of highly steatotic livers by utilizing a donor/recipient clinical algorithm. Clin Transplant 2013;27(5):732–741. DOI: 10.1111/ctr.12211.
  22. Orman ES, Mayorga ME, Wheeler SB, et al. Declining liver graft quality threatens the future of liver transplantation in the United States. Liver Transpl 2015;21(8):1040–1050. DOI: 10.1002/lt.24160.
  23. Feng S, Goodrich NP, Bragg-Gresham JL, et al. Characteristics associated with liver graft failure: the concept of a donor risk index. Am J Transplant 2006;6(4):783–790. DOI: 10.1111/j.1600-6143.2006.01242.x.
  24. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41(6):1313–1321. DOI: 10.1002/hep.20701.
  25. Patrono D, Surra A, Catalano G, et al. Hypothermic oxygenated machine perfusion of liver grafts from brain-dead donors. Sci Rep 2019;9(1):9337. DOI: 10.1038/s41598-019-45843-3.
  26. Tchilikidi KY. Liver graft preservation methods during cold ischemia phase and normothermic machine perfusion. World J Gastrointest Surg 2019;11(3):126–142. DOI: 10.4240/wjgs.v11.i3.126.
  27. Yersiz H, Lee C, Kaldas FM, et al. Assessment of hepatic steatosis by transplant surgeon and expert pathologist: a prospective, double-blind evaluation of 201 donor livers. Liver Transpl 2013;19(4):437–449. DOI: 10.1002/lt.23615.
  28. Cesaretti M, Addeo P, Schiavo L, et al. Assessment of liver graft steatosis: where do we stand? Liver Transpl 2019;25(3):500–509. DOI: 10.1002/lt.25379.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.