Euroasian journal of hepato-gastroenterology

Register      Login

VOLUME 11 , ISSUE 2 ( July-December, 2021 ) > List of Articles


Clinical Features and Pathophysiological Mechanisms of COVID-19-associated Gastrointestinal Manifestations

Abdullah Tarık Aslan, Halis Şimşek

Keywords : Angiotensin-converting enzyme 2, COVID-19, Gastrointestinal manifestations, Pathogenesis, SARS-CoV-2

Citation Information : Aslan AT, Şimşek H. Clinical Features and Pathophysiological Mechanisms of COVID-19-associated Gastrointestinal Manifestations. Euroasian J Hepatogastroenterol 2021; 11 (2):81-86.

DOI: 10.5005/jp-journals-10018-1347

License: CC BY-NC 4.0

Published Online: 22-10-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Aim and objective: According to the literature, gastrointestinal (GI) involvement may have a remarkable influence on the course of coronavirus disease-2019 (COVID-19). Our aim with this article is to appraise clinical characteristics and presumptive biological mechanisms of digestive tract involvement of COVID-19. Background: In this review article, the English language literature was reviewed by using PubMed and MEDLINE databases, up to February 2021. Review results: The patients with GI involvement are generally presented with diarrhea, nausea/vomiting, anorexia, abdominal pain, and rarely GI bleeding. However, frequencies of these manifestations are diverse in studies published so far, depending on the countries where the studies were conducted, characteristics of the study populations, and methodological differences. Several studies proved that this novel coronavirus gets into the enterocytes by attaching to angiotensin-converting enzyme 2 receptor. Some of them have shown a direct viral invasion and replication of the virus within enterocytes. Along with detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients’ fecal materials, all these results explicitly indicate that the virus has the capability to invade the GI system. These findings may represent a potential risk indicator for fecal–oral spread of the virus. Although pathophysiology of COVID-19 associated GI manifestations remains elusive, direct viral damage, dysfunction in renin–angiotensin–aldosterone system, effects of gut–lung axis, and GI tract microbiome dysbiosis have been proposed as culprit mechanisms of the GI symptoms and inflammatory response. Conclusion: The patients with COVID-19 can be presented with diverse clinical manifestations including the GI symptoms. Understanding the actual impact of the virus on the GI tract depends on uncovering the pathophysiology of COVID-19. Clinical significance: GI involvement of COVID-19 appears to be crucial not only for its clinical consequences but also for its impacts on public health and prevention.

  1. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–1720. DOI: 10.1056/NEJMoa2002032.
  2. World Health Organization. Naming the coronavirus disease (COVID-19) and the virus that causes it. Technical guidance. 2020. Available from:
  3. Perlman S, Netland J. Coronaviruses post SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009;7(6):439–450. DOI: 10.1038/nrmicro2147.
  4. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-ınfected pneumonia in Wuhan, China. JAMA 2020;323(11):1061–1069. DOI: 10.1001/jama.2020.1585.
  5. Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol 2020;115(5):766–773. DOI: 10.14309/ajg.0000000000000620.
  6. Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020;183(6):1735. DOI: 10.1016/j.cell.2020.11.032.
  7. Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus- EMC. Nature 2013;495(7440):251–254. DOI: 10.1038/nature12005.
  8. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016;3(1):237–261. DOI: 10.1146/annurev-virology-110615-042301.
  9. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367(6483):1260–1263. DOI: 10.1126/science.abb2507.
  10. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–280. DOI: 10.1016/j.cell.2020.02.052.
  11. Qi F, Qian S, Zhang S, et al. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 2020;526(1):135–140. DOI: 10.1016/j.bbrc.2020.03.044.
  12. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382(10):929–936. DOI: 10.1056/NEJMoa2001191.
  13. Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020;69(6):997–1001. DOI: 10.1136/gutjnl-2020-321013.
  14. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020;368:m1091. DOI: 10.1136/bmj.m1091.
  15. Jin X, Lian JS, Hu JH, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 2020;69(6): 1002–1009. DOI: 10.1136/gutjnl-2020-320926.
  16. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020;75(7): 1730–1741. DOI: 10.1111/all.14238.
  17. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395(10223):507–513. DOI: 10.1016/S0140-6736(20)30211-7.
  18. Sultan S, Altayar O, Siddique SM, et al. AGA Institute rapid review of the gastrointestinal and liver manifestations of COVID-19, meta-analysis of ınternational data, and recommendations for the consultative management of patients with COVID-19. Gastroenterology 2020;159(1):320–334. DOI: 10.1053/j.gastro.2020.05.001.
  19. Liang W, Feng Z, Rao S, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut 2020;69(6):1141–1143. DOI: 10.1136/gutjnl-2020-320832.
  20. Cheung KS, Hung IFN, Chan PPY, et al. Gastrointestinal manifestations of SARS-CoV-2 ınfection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology 2020;159(1):81–95. DOI: 10.1053/j.gastro.2020.03.065.
  21. Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020;5(7):667–678. DOI: 10.1016/S2468-1253(20)30126-6.
  22. Luo S, Zhang X, Xu H. Don't overlook digestive symptoms in patients with 2019 novel coronavirus disease (COVID-19). Clin Gastroenterol Hepatol 2020;18(7):1636e7. DOI: 10.1016/j.cgh.2020.03.043.
  23. Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 2020;5(5):428–430. DOI: 10.1016/S2468-1253(20)30057-1.
  24. Parasa S, Desai M, Thoguluva Chandrasekar V, et al. Prevalence of gastrointestinal symptoms and fecal viral shedding in patients with coronavirus disease 2019: a systematic review and meta-analysis. JAMA Netw Open 2020;3(6):e2011335. DOI: 10.1001/jamanetworkopen.2020.11335.
  25. Pan Y, Zhang D, Yang P, et al. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis 2020;20(4):411–412. DOI: 10.1016/S1473-3099(20)30113-4.
  26. Ling Y, Xu SB, Lin YX, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl) 2020;133(9):1039–1043. DOI: 10.1097/CM9.0000000000000774.
  27. Xiao F, Tang M, Zheng X, et al. Evidence for gastrointestinal ınfection of SARS-CoV-2. Gastroenterology 2020;158(6):1831–1833. DOI: 10.1053/j.gastro.2020.02.055.
  28. Yang L, Tu L. Implications of gastrointestinal manifestations of COVID-19. Lancet Gastroenterol Hepatol 2020;5(7):629–630. DOI: 10.1016/S2468-1253(20)30083-2.
  29. Deidda S, Tora L, Firinu D, et al. Gastrointestinal Coronavirus disease 2019: epidemiology, clinical features, pathogenesis, prevention and management. Expert Rev Gastroenterol Hepatol 2020;15(1):41–50. DOI: 10.1080/17474124.2020.1821653.
  30. Norsa L, Bonaffini PA, Indriolo A, et al. Poor outcome of intestinal ischemic manifestations of COVID-19. Gastroenterology 2020;159(4):1595–1597. DOI: 10.1053/j.gastro.2020.06.041.
  31. Keshavarz P, Rafiee F, Kavandi H, et al. Ischemic gastrointestinal complications of COVID-19: a systematic review on imaging presentation. Clin Imaging 2020;73:86–95. DOI: 10.1016/j.clinimag.2020.11.054.
  32. McFadyen JD, Stevens H, Peter K. The emerging threat of (micro) thrombosis in COVID-19 and its therapeutic implications. Circ Res 2020;127(4):571–587. DOI: 10.1161/CIRCRESAHA.120.317447.
  33. Liu F, Long X, Zhang B, et al. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol 2020;18(9):2128–2130. DOI: 10.1016/j.cgh.2020.04.040.
  34. Rawla P, Bandaru SS, Vellipuram AR. Review of infectious etiology of acute pancreatitis. Gastroenterol Res 2017;10(3):153–158. DOI: 10.14740/gr858w.
  35. Hadi A, Werge M, Kristiansen KT, et al. Coronavirus disease-19 (COVID-19) associated with severe acute pancreatitis: case report on three family members. Pancreatology 2020;20(4):665–667. DOI: 10.1016/j.pan.2020.04.021.
  36. Aloysius MM, Thatti A, Gupta A, et al. COVID-19 presenting as acute pancreatitis. Pancreatology 2020;20(5):1026–1027. DOI: 10.1016/j.pan.2020.05.003.
  37. Juhász MF, Ocskay K, Kiss S, et al. Insufficient etiological workup of COVID-19 associated acute pancreatitis: a systematic review. World J Gastroenterol 2020;26(40):6270–6278. DOI: 10.3748/wjg.v26.i40.6270.
  38. Yao XH, Li TY, He ZC, et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi 2020;49(5):411–417. DOI: 10.3760/cma.j.cn112151-20200312-00193.
  39. Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004;203(2):622–630. DOI: 10.1002/path.1560.
  40. Ma C, Cong Y, Zhang H. COVID-19 and the digestive system. Am J Gastroenterol 2020;115(7):1003–1006. DOI: 10.14309/ajg.0000000000000691.
  41. Dickson I. Organoids demonstrate gut infection by SARS-CoV-2. Nat Rev Gastroenterol Hepatol 2020;17:383. DOI: 10.1038/s41575-020-0317-5.
  42. Vuille-Dit-Bille RN, Liechty KW, Verrey F, et al. SARS-CoV-2 receptor ACE2 gene expression in small intestine correlates with age. Amino Acids 2020;52(6–7):1063–1065. DOI: 10.1007/s00726-020-02870.
  43. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS- CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020;382(16):1564–1567. DOI: 10.1056/NEJMc2004973.
  44. Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 2017;15(1):55–63. DOI: 10.1038/nrmicro.2016.142.
  45. Wang J, Li F, Wei H, et al. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J Exp Med 2014;211(12):2397–2410. DOI: 10.1084/jem.20140625.
  46. Papadakis KA, Prehn J, Nelson V, et al. The role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system. J Immunol 2000;165(9):5069–5076. DOI: 10.4049/jimmunol.165.9.5069.
  47. Crowe CR, Chen K, Pociask DA, et al. Critical role of IL-17RA in immunopathology of influenza infection. J Immunol 2009;183(8):5301–5310. DOI: 10.4049/jimmunol.0900995.
  48. Tian Y, Rong L, Nian W, et al. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther 2020;51(9):843–851. DOI: 10.1111/apt.15731.
  49. Garg M, Royce SG, Tikellis C, et al. Imbalance of the renin-angiotensin system may contribute to inflammation and fibrosis in IBD: a novel therapeutic target? Gut 2020;69(5):841–851. DOI: 10.1136/gutjnl-2019-318512.
  50. Garg M, Burrell LM, Velkoska E, et al. Upregulation of circulating components of the alternative renin-angiotensin system in inflammatory bowel disease: a pilot study. J Renin Angiotensin Aldosterone Syst 2015;16(3):559–569. DOI: 10.1177/1470320314521086.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.